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Abstract

A method is presented that makes it possible to estimate both the orientation and the magnitude of the chemical
shift anisotropy (CSA) tensor in molecules with a pair of spin1/2 nuclei, typically13C-1H or 15N-1H. The method
relies on the fact that the longitudinal cross-correlation rate as well as a linear combination of the autorelaxation
rates of longitudinal heterospin magnetization, longitudinal two-spin order and longitudinal proton magnetization
are proportional to the spectral density at the Larmor frequency of the heterospin. Therefore the ratio between the
cross-correlation rate and the above linear combination is independent of the dynamics. From the field dependence
of the ratio both the magnitude and the orientation of the CSA tensor can be estimated. The method is applicable
to molecules in all motional regimes and is not limited to molecules in extreme narrowing or slow tumbling, nor is
it sensitive to chemical exchange broadening. It is tested on the 22 amino acid residue peptide motilin, selectively
13C labeled in the ortho positions in the ring of the single tyrosine residue. In the approximation of an axially
symmetric13C CSA tensor, the symmetry axis of the CSA tensor makes an angle of 23◦ ± 1◦ to the13C-1H bond
vector, and has a magnitude of 156± 5 ppm. This is in close agreement with solid-state NMR data on tyrosine
powder [Frydman et al. (1992)Isr. J. Chem., 32, 161–164].

Introduction

Knowledge about the parameters characterising the
chemical shift anisotropy (CSA) is necessary when
NMR relaxation rates are used to study the dynamics
of molecules. This is particularly important when ex-
periments are performed at high magnetic fields. The
CSA of α-carbons in proteins has also been shown to
correlate with secondary structure (Tjandra and Bax,
1997a) and the CSA of amide nitrogens and attached
protons correlates with hydrogen bond length (Tjandra
and Bax, 1997b).

Recently attempts have been made to estimate
the average magnitude of the CSA and the orienta-
tion from standard relaxation data sets (T1, T2 and
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NOE) (Boyd and Redfield, 1998). Another branch of
experiments aiming at the CSA comes from studies
of weakly aligned proteins (Ottiger et al., 1997). A
common method has been to estimate the CSA from
the interference effect between the CSA and dipole–
dipole (DD) relaxation mechanisms. However, this
approach suffers from not being able to separate the ef-
fects of orientation and magnitude of the CSA (Tessari
et al., 1997a,b; Tjandra and Bax, 1997a,b; Fushman
and Cowburn, 1998).

Very recently Fushman and co-workers (Fushman
et al., 1998b) reported a method to estimate both the
magnitude and the orientation of the CSA parameters
from field-dependent ratios between the transverse re-
laxation rate and the transverse cross-correlation rate.
Here we present a method in the same spirit, where the
field dependence of three longitudinal autorelaxation
rates and the longitudinal cross-correlation rate are
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used. Thereby one avoids the possible problems asso-
ciated with conformational exchange contributions to
the autorelaxation and the approximation concerning
the high frequency components of the spectral den-
sity function. The presented method is the first one
that is applicable in all motional regimes, i.e. also for
rapidly rotating molecules and flexible parts of larger
molecules like the side chains in proteins. This also
opens up the possibility of comparing the CSA of
small model compounds studied by solid-state NMR
with the CSA obtained from relaxation studies in so-
lution. It is straightforward to apply the same method
to measure the CSA parameters also of uniformly15N
labeled peptides and proteins. Deuteration will help to
increase the accuracy of measured rates by minimising
the relaxation caused by surrounding protons. Uni-
formly 13C labeled proteins will have contributions
from 13C-13C interactions and therefore will require a
different approach to measure and to evaluate the CSA
parameters.

We have applied the longitudinal relaxation rate
method to evaluate the CSA parameters of a CH bond
in the aromatic ring of tyrosine in a peptide hormone
and compared the results to literature data on tyrosine
powder studied by solid-state NMR (Frydman et al.,
1992).

Theory

The interference between the CSA and dipole–dipole
relaxation mechanisms, i.e. cross-correlation, can be
observed as a conversion between longitudinal mag-
netization and two-spin order. For an axially sym-
metric 13C CSA tensor the rate of conversion (cross-
correlation rateδC) could be expressed as (Goldman,
1984):

δC = −µ0

4π

h̄γHγ2
C

r3
CH

1σB0P2(cos(β)) · J (ωC) (1)

Here1σ = σ|| − σ⊥ is the difference between the
shielding of the nucleus under study when the static
field is parallel,σ||, and orthogonal,σ⊥, to the sym-
metry axis of the CSA tensor.B0 is the static magnetic
field,γC andγH are the gyromagnetic ratios of13C and
proton, respectively,µ0 is the permeability of vacuum
and h̄ is Plank’s constant. P2 symbolizes the second
Legendre polynomial, P2(cos(β)) = (3 cos2(β)−1)/2,
whereβ is the angle between the internuclear vector
and the symmetry axis of the CSA tensor,rCH is the

carbon-proton distance.J (ωC) is the spectral density
at the Larmor frequency of the carbon, where the spec-
tral density function is normalized so that its integral
from −∞ to ∞ equals 2π/5. This implies that for
e.g. isotropic Brownian motionJ (ω) = (2/5)τC/(1+
(τCω)2)

The spectral densityJ (ωC) can be calculated from
the auto-relaxation rates of longitudinal carbon mag-
netization, ρC , longitudinal two-spin order,ρCH ,
and longitudinal proton magnetization,ρH (Peng and
Wagner, 1992):

J (ωC) = ρC + ρCH − ρH

2
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0γ2
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4r6
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When Equations 1 and 2 are combined and rearranged:

B0
ρC+ ρCH− ρH

δC
= 4π

µ0

−21σr3
CH

3h̄γHP2(cos(β))
· B2

0

−µ0

4π

3h̄γH

21σr3
CHP2(cos(β))

= slope· B2
0 + intercept (3)

From a field-dependent relaxation study of longitu-
dinal relaxation and cross-correlation one can obtain
the slope and intercept parameters in Equation 3. The
magnitude of the CSA can be calculated as:

|1σ| =
√

slope

intercept
· 3h̄γHµ0

8πr3
CH

(4)

and the orientation factor:

|forient| = |P2(cos(β))| = (slope· intercept)−1/2

(5)

The signs of P2(cos(β)) and1σ are somewhat am-
biguous, but their relative signs can be backtraced
from the sign of the cross-correlation rate. If the cross-
correlation rate is positive, then either P2(cos(β)) or
1σ is negative. If the cross-correlation rate is negative
they both have the same sign. If|P2(cos(β))| > 0.5,
as determined from experimental data using Equa-
tion 5, then P2(cos(β)) is positive and the sign of
1σ follows from the sign of the cross-correlation rate,
while if |P2(cos(β))| < 0.5 only the relative signs of
P2(cos(β)) and1σ and their absolute numerical values
can be determined.

For the general case, when the CSA tensor is not
axially symmetric, a relaxation effective magnitude is
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Figure 1. The heteronuclear pulse sequences with sensitivity enhancement used for measuring the relaxation parameters discussed in the
text. Black thin and thick vertical bars represent 90◦ and 180◦ pulses, respectively. (A) Pulse sequence for following the buildup of carbon
magnetization from two-spin order. The phase is y when nothing else is stated.ϕ1 = 4(y), 4(−y); ϕ2 = x, −x; ϕ3 = 2(x), 2(−x); ϕ4 = 2(y),
2(−y); ϕ5 = 8(x), 8(−x); Acq. = x, −x, −x, x, −x, x, x, −x; (B) Pulse sequence for following the buildup of two-spin order from carbon
magnetization.ϕ1 = 4(y), 4(−y); ϕ2 = 8(x), 8(−x); ϕ3 =y, −y; ϕ4 = 2(x), 2(−x); ϕ5 = 2(y), 2(−y); Acq. = x, −x, −x, x, −x, x, x,−x,
−x, x, x,−x, x, −x, −x, x; (C) Pulse sequence for following the decay of carbon magnetization when cross-correlation is active.ϕ1 = 4(y),
4(−y); ϕ2 =y,−y; ϕ3 = 2(x), 2(−x); ϕ4 = y, ϕ5 = 2 (y); 2(−y); ϕ6 = 8(x), 8(−x); Acq.= x, −x, −x, x,−x, x, x,−x; (D) Pulse sequence
for following the decay of two-spin order when cross-correlation is active. The phase is y when nothing else is stated.ϕ1 = 4(y), 4(−y);
ϕ2 = 8(x), 8(−x); ϕ3 =x, −x; ϕ4 = 2(x), 2(−x); ϕ5 = 2(y), 2(−y); Acq.−= x, −x, −x, x, −x, x, x, −x, −x, x, x, −x, x, −x, −x, x; (E)
Pulse sequence for measuring the autorelaxation rate of longitudinal carbon magnetization, when cross-correlation is suppressed so as to obtain
a single exponential decay. The phase is y when nothing else is stated.ϕ1 =y,−y; ϕ2 = 2(x), 2(−x); ϕ3 =y; ϕ4 = 2(y), 2(−y); Acq.= x,−x,
−x, x; (F) Pulse sequence for measuring the autorelaxation rate of two-spin order, when cross-correlation is suppressed so as to obtain a single
exponential decay. The phase is x when nothing else is stated.ϕ1 = 8(y), 8(−y); ϕ2 = 4(x), 4(−x); ϕ3 = x,−x; ϕ4 = 2(x), 2(−x); ϕ5 = 2(y);
Acq.= x,−x,−x, x,−x, x, x,−x,−x, x, x,−x, x,−x,−x, x.

obtained in Equation 4 together with an orientation
factor in Equation 5. The effective CSA is:

1σeff =√
σ2
xx + σ2

yy + σ2
zz − (σxxσyy + σxxσzz + σyyσzz)

(6)

whereσxx , σyy andσzz are the principal values of the
CSA tensor.

The expression for the cross-correlation rate of an
asymmetric CSA tensor was derived as outlined by
Canet (1998), and is as follows:

δC = −µ0

4π

h̄γ2
CγH

r3
CH

B0 ·
[
(σzz− σyy)

3 cos2 θz,r − 1

2

+ (σxx − σyy)
3 cos2 θx,r − 1

2

]
· J(ωC) (7)

Since the expression between the square brackets,
related to the projection of the CSA tensor on the CH



30

bond vector, is constant, it can always be expressed
as a proportionality constantforient. multiplied by the
effective CSA,1σeff :

(σzz− σyy)
3 cos2 θz,r − 1

2
+ (σxx − σyy)

3 cos2 θx,r − 1

2
≡ forient ·1σeff (8)

whereθz,r is the angle between the z principal axes of
the CSA tensor and the CH bond vector andθx,r is the
angle between the x principal axes of the CSA tensor
and the CH bond vector.

With these definitions1σeff is always positive
(see Equation 6), whileforient can take any value be-
tween−1 and 1. This is somewhat different from the
standard convention where1σ is defined as the shield-
ing when the main field is parallel,σ||, to the symmetry
axis of the shielding tensor minus the shielding when
the main field is orthogonal,σ⊥, to the symmetry
axis. With this convention1σ can be either positive
or negative, while the term P2(cos(β)), related to the
orientation of the CSA tensor in the molecular frame,
can take any value between−1/2 and 1.

For a cylindrically symmetric CSA tensor, if
σ|| > σ⊥, thenforient = P2(cos(β)) and1σeff =
1σ = σ|| − σ⊥, whereas ifσ|| < σ⊥ the forient =
−P2(cos(β)) and1σeff = −1σ = −(σ|| − σ⊥).

Experimental

Sample
The method for obtaining information concerning the
CSA tensor from relaxation experiments in liquids
outlined above was tested on a peptide sample contain-
ing motilin with 22 amino acid residues and labeled
with 13C in the ortho positions of the aromatic ring
of the single tyrosine residue. The concentration of
the peptide was 5 mM in 30% hexafluoroisopropanol-
d/10% D2O/60% H2O. The peptide was manually
synthesised using stepwisetert-butyloxycarbonyl (t-
Boc) solid phase synthesis as previously described
(Allard et al., 1995). The13C labeled tyrosine was pur-
chased from Cambridge Isotope Laboratories. A t-Boc
protecting group was attached according to prescribed
procedures. The purity was checked with analytical
HPLC (C18 column 218TP1010, Vydac). The correct
molecular mass, 2699.5 Da, was confirmed by an ex-
perimental mass determined to be 2697.8 Da, using

plasma desorption mass spectrometry (Model Bioion
20, Applied Biosystems).

NMR spectroscopy
Experiments were performed using Varian Inova spec-
trometers operating at 18.79, 14.09 and 9.39 T cor-
responding to proton resonance frequencies of 800,
600 and 400 MHz, respectively. A recycle delay of
5 s was used, including 1.5 s low power water satu-
ration and the acquisition time. All experiments were
carried out at 318 K. Hard proton and carbon pulse
widths were about 7 and 18µs, respectively, on
all spectrometers. The proton frequency was placed
approximately 50 Hz off-resonance. The carbon fre-
quency was set on-resonance. Carbon decoupling was
achieved by continuous wave decoupling with a B1
field of ca. 0.5 kHz.

Pulse sequences
The pulse sequences for measuring cross-correlation
are shown in Figure 1A–D. The rate of conversion
between longitudinal carbon magnetization (Cz) and
two-spin order (2HzCz), i.e. the cross-correlation rate,
was measured by following either the carbon mag-
netization (Figure 1A,C), or the two-spin order (Fig-
ure 1B,D), after either an inversion of the carbon mag-
netization (Figure 1B,C) or preparation of two-spin
order (Figure 1A,D), in four separate experiments.

The pulse sequences were developed from the
pulse sequences of Dayie and Wagner (1994) and use
proton excitation and detection of transient magnetiza-
tion and pulse field gradients for coherence selection
and water suppression.

A carbon inversion pulse was inserted in the mid-
dle of the mixing time (Figure 1A–D) for suppression
of unwanted relaxation pathways (mainly heteronu-
clear cross-relaxation). This makes it possible to fit the
cross-correlation rate without having to consider the
heteronuclear cross-relaxation rate and the autorelax-
ation rate of the proton. Furthermore, the phase cycles
were adjusted so as to obtain a decay towards zero
intensity in the inversion recovery type of experiments
(Freeman and Hill, 1971).

The proton pulse(s) immediately after the mixing
time were found necessary for suppressing a dis-
persive artifact at short mixing times in the buildup
experiments.

In two separate experiments the pulsing during
the mixing time was changed so as to obtain single
exponential decays of longitudinal carbon magneti-
zation (Figure 1E) and longitudinal two-spin order
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Figure 2. Pulse sequence for measuring the autorelaxation rate of
longitudinal proton magnetisation.ϕ1 = 4(x), 4(−x); ϕ2 = 2(x),
2(−x); ϕ3 = 2(y), 2(−y); Acq.= x,−x,−x, x; the phase is x when
nothing else is stated. Selective proton inversion pulses are indicated
with bell-shaped symbols.

(Figure 1F). This was achieved by broadband proton
decoupling for longitudinal carbon magnetization and
by a proton inversion in the middle of the mixing time
for two-spin order, which effectively suppresses the
CSA-DD cross-correlation effect (Boyd et al., 1990;
Kay et al., 1992; Palmer et al., 1992). By using the
extended phase cycle instead of the original pulse
sequence (Dayie and Wagner, 1994) to average the
relaxation of positive and negative two-spin order, the
potential cross-relaxation with other protons becomes
effectively indirect.

The autorelaxation rate of longitudinal proton
magnetization was measured using the pulse sequence
of Figure 2. The experiments were performed in accor-
dance with the suggestions by Norwood (1996, 1997),
in an add/subtract manner, with selective proton inver-
sion in the middle of the relaxation delay, to obtain a
single exponential decay towards zero.

For all pulse sequences (Figure 1A–F and Figure 2)
the delayδ was set to (4J)−1 where J is the one-
bond scalar coupling constant of 159 Hz. Before each
pulse sequence, 1.5 s low power water saturation was
used. The delaysτ1 andτ2 were set to 0.7075 ms and
0.4257 ms, respectively.

Experiments at (800, 600, 400 MHz): An acquisi-
tion time of (512, 512,128 ms) was used. The gradient
pulses g1 and g2 were applied with strengths of ca.
(0.6, 0.3, 0.6) T/m during 0.61 and 0.15 ms, re-
spectively. The precise strength of the g2 pulse was
adjusted to meet the criterion g1·t1/g2·t2= γH/γC.

In the experiments where cross-correlation was ef-
fective (sequences in Figure 1A, B, C and D) (64, 64,
288) transients were added for each mixing time. (16,
16, 12) different mixing times between (1, 1, 5) ms
and (1.4, 1.7, 1.4) s were sampled, more densely for
shorter mixing times.

In the experiments for measuring the autorelax-
ation rate of carbon magnetization,ρC (pulse sequence
in Figure 1E) and in the experiment for measuring the
autorelaxation rate of two-spin order,ρCH (pulse se-
quence in Figure 1F), (64, 16, 128) transients were
added for each of the (30, 30, 14) mixing times
between (1, 1, 5) ms and (640, 640, 300) ms.

In the proton autorelaxation experiment (16, 48,
128) transients were added and (24, 27, 14) different
mixing times between (5, 5, 3) ms and (0.9, 0.9, 0.77)
s were sampled. A recycling time of (8, 6, 3.1) s was
used. For selective proton inversion (53.5, 42.5,−) ms
Isnob2 pulses (Kup̌ce et al., 1995) were used. BIRD
pulses (Garbow et al., 1982) were used for selective
proton inversions at 400 MHz, since the difference in
resonance frequency between the protons at positions
2 and 6 in the ring and the protons attached to the
labeled carbons was considered small.

Results

The experimental magnetization decay and buildup
curves from experiments at 400 MHz (9.39 T) are
shown in Figure 3 together with the fitted curves. The
decay and buildup curves when cross-correlation is
effective and other cross-relaxation pathways are sup-
pressed can be described by two coupled differential
equations (Felli et al., 1998):

d

dt

(
1〈Cz〉

1〈2HzCz〉
)
=−

(
ρC δC
δC ρCH

)
·
(

1〈Cz〉
1〈2HzCz〉

)
=−R ·1M (9)

with the solution (Najfeld et al., 1996)

1M(t) = exp(−tR) ·1M(0) (10)

With the initial conditions1〈Cz〉(0) = C0
z and

1〈2HzCz〉(0) = 0, the solution to Equation 9 will
describe the decay of carbon magnetisation, cde ·
1〈Cz〉(t), when cross-correlation is effective. Here cde
is a constant slightly less than unity, describing the
slightly less efficient detection of carbon magnetiza-
tion compared to two-spin order due to a longer pulse
sequence. With the initial conditions1〈Cz〉(0) = 0
and1〈2HzCz〉(0) = 2HzC0

z , the solution to Equa-
tion 9 will describe the buildup of carbon magneti-
sation, cde · 1〈Cz〉(t), from two-spin order. With the
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Figure 3. The experimental data set from the lowest field (9.39 T)
with the lowest accuracy. The experimental intensities are shown to-
gether with their fitted curves, as solutions to Equation 9, described
in the text. (A) shows the time evolution of carbon magnetization.
The filled triangles are the experimental results from the experiment
when two-spin order was created and carbon magnetization was de-
tected (the sequence of Figure 1A). The filled squares are the exper-
imental results from the decay experiment when cross-correlation
was active (the sequence of Figure 1C). The filled circles are the
experimental results when care was taken to achieve a single ex-
ponential decay (the sequence of Figure 1E). (B) shows the time
evolution of two-spin order. Open triangles represent the buildup
from longitudinal carbon magnetization and were obtained by us-
ing the sequence of Figure 1B. The open squares are the decay of
two-spin order when cross-correlation was active, obtained by the
pulse sequence of Figure 1D. The open circles are the decay of
two-spin order when care was taken to suppress cross-correlation
to achieve a single exponential decay obtained by the sequence of
Figure 1F.

Table 1. Relaxation rates (s−1) measured at 35◦C and at three mag-
netic fields for the ortho carbons of tyrosine in motilin. The uncer-
tainties refer to one standard deviation confidence limit, estimated
by the fitting procedure

9.39 T (400 MHz) 14.09 T (600 MHz) 18.79 T (800 MHz)

ρC 4.15± 0.02 3.05± 0.01 2.58± 0.01

ρCH 4.78± 0.02 3.98± 0.02 3.45± 0.01

ρH 2.81± 0.03 2.08± 0.01 1.60± 0.01

δC 1.72± 0.02 1.69± 0.01 1.62± 0.01

initial conditions1〈Cz〉(0) = 0 and1〈2HzCz〉(0) =
2HzC0

z, the solution to Equation 9 will describe the
decay of two-spin order,1〈2HzCz〉(t), when cross-
correlation is effective. With the initial conditions
1〈Cz〉(0) = C0

z and1〈2HzCz〉(0) = 0 the solution to
Equation 9 will describe the buildup of two-spin order,
1〈2HzCz〉(t), from carbon magnetisation.

The equations

IC(t) = I0
C exp(−ρCt) (11)

and

ICH(t) = I0
CH exp(−ρCHt) (12)

were used to fit to the experimental data when care
was taken to suppress cross-correlation. All eight pa-
rametersρC, ρCH, δC,C0

z,2HzC0
z, I

0
C, I

0
CH and cdewere

fitted to all six experimental data sets in a simultaneous
fit, using the Levenberg–Marquardt algorithm in the
program gnuplot v. 3.6. The obtained relaxation rates
ρC, ρCH, andδC are summarized in Table 1. The de-
cay curves from the proton autorelaxation experiments
were adequately fitted by a two-parameter single ex-
ponential decay curve and the rates (ρH) are shown in
Table 1.

As described in the Theory section, a linear curve
should be obtained whenB0(ρC+ ρCH + ρH)/δC is
plotted as a function of the magnetic field squared.
The experimental data and the fitted line are shown
together in Figure 4.

The effective magnitude of the CSA was calculated
according to Equation 4. The relaxation effective CSA
was estimated to be 153±5 ppm when the numerical
value of rCH = 1.09 Å was used. The orientation
factor was estimated to be−0.76±0.02 using Equa-
tion 5. The obtained results are shown in Table 2,
where they are compared to the results of the solid-
state NMR experiments of Frydman et al. (1992) on
tyrosine powder. The uncertainties of theσeff and
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Figure 4. The ratio between the linear combination of the au-
torelaxation rates proportional toJ(ωC) and the cross-correlation
rate, times the magnetic field as a function of the magnetic field
squared, together with the least-squares fitted line corresponding to:
B0

ρC+ρCH−ρH
δCCH

= (0.062± 0.004)T −1 · B2
0 + (28.29± 0.85)T .

forient parameters were obtained from Monte Carlo
simulations using 3000 randomly distributed synthetic
data sets as described by Palmer et al. (1991). Standard
errors of relaxation rates were obtained by the fitting
procedure.

Since the solid-state experiment used by Frydman
does not give any information concerning the orien-
tation of the principal axis of the CSA tensor, we
conducted an ab initio calculation using Gaussian98
for obtaining the orientation of the principal axes in
the molecular frame, usingp-cresol as a model com-
pound. The structure was geometry optimized using
the B3LYP method and a 6-31G(d) basis set, and
showed a certain asymmetry of the hydroxyl group
in the aromatic plane. For the NMR parameter cal-
culation the Hartree–Fock method was used with the
6-311+G(2d,p) basis set and the optimized coordi-
nates. The results for the two non-equivalent ortho
carbons are shown in Table 2. This calculation al-
lowed us to fix the principal axes in the molecular
frame also for the solid-state NMR results. The least
shielded component is parallel to the CH bond, the
most shielded component is orthogonal to the plane
of the aromatic ring and the intermediate component
is orthogonal to the other two.

Discussion

In this work we have shown a precise and robust
method for measurement of the CSA for a pair of spin
1/2 nuclei. The data allows independent estimations
of the magnitude and the orientation of the CSA. A
reliable estimation of the CSA parameters and their
variations depending on the molecular environment is
needed for interpretation of NMR relaxation experi-
ments in terms of molecular dynamics. The values
found here for the ortho carbons of tyrosine in a short
peptide are in good agreement with solid state data
on tyrosine powder (Frydman et al., 1992). The ori-
entation factorforient describes the angle between the
symmetry axis of a cylindrically symmetric CSA ten-
sor and the internuclear vector and takes the value 1
when they are collinear. It should be noticed that this
factor determines the theoretical limit of the resolution
improvement in the TROSY experiment (Pervushin
et al., 1997), since it determines the degree by which
dipole–dipole and CSA relaxation can attenuate one
another (optimal attenuation is obtained for collinear
vectors).

Systematic errors may influence the determination
of the CSA parameters. We have particularly consid-
ered two potential sources of errors: (1) anisotropic
motions, and (2) additional relaxation by neighboring
protons.

(1) Anisotropic motions could in principle lead to
different spectral densities at the Larmor frequency
of the carbon,ωC, for the CSA mechanism and the
dipole–dipole mechanism. The close agreement be-
tween the solid-state experiment and the liquid state
relaxation experiment presented here indicates that, in
practice, anisotropic motions are not a problem in our
system. In a recent article (Fushman and Cowburn,
1999) it was shown that the difference between the
spectral densities for tensors with different orienta-
tions in the molecular frame is smaller for the spectral
density at the Larmor frequency compared to zero fre-
quency. This indicates that the potential problem of
anisotropic motions when estimating the CSA from re-
laxation rates may be relatively small for longitudinal
relaxation, which is dominated byJ (ωC). This is in
contrast to transverse relaxation, which is dominated
by J (0). J (0) is in turn very sensitive to anisotropic
motion. However, in the general case anisotropic mo-
tion will certainly affect the results obtained by both
methods. In the present case our preliminary theo-
retical analysis indicates that in a system with high
anisotropy and whereωcτc is far from unity (τc is
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Table 2. Magnitude and orientation factor of chemical shift anisotropy for the ortho carbons of tyrosine

Method σxx σyy σzz 1σeff forient Reference

NMR relaxationa 153±5 −0.76±0.02 This work

NMR relaxationb 156±5 −0.77±0.02 This work

Solid-state NMR −15.7c 51.0c 167.1c 160.2 −0.78 Frydman et al., 1992

Solid-state NMR −18.43c 45.8c 166.4c 162.5 −0.77 Frydman et al., 1992

Ab initio −16.4d 75.3d 168.4d 160.1 −0.79 This work

Ab initio −23.7d 61.9d 176.6d 174.03 −0.82 This work

aObtained without taking the effect of other protons in the vicinity into account using Equations 4 and 5.
bObtained using Equations 14, 15 and 16 where the effect of other protons is taken into account.
cAdapted from Frydman et al. (1992) assuming an absolute isotropic shielding of TMS of 182.5 ppm as
obtained using Gaussian98 with the same protocol as forp-cresol. The two rows correspond to the two
non-equivalent ortho carbons in tyrosine.

dFrom Gaussian98 calculation onp-cresol described in the Results section. The double set of data results
from the two non-equivalent ortho carbons inp-cresol. From the ab initio calculation we could draw the
conclusion that the CSA tensor x-axis is parallel to the CH bond, the z-axis is orthogonal to the plane of
the ring and the y-axis is orthogonal to the other two. These orientations were assumed when calculating
the orientation factors,forient, from the shielding tensor principal values obtained by solid-state NMR.

the overall rotational correlation time), the system-
atic error in the parameters caused by anisotropic
motion may be significantly increased (P. Damberg,
unpublished results).

(2) Another effect that could give rise to system-
atic errors is the possible interference from relaxation
mechanisms other than CSA and dipole–dipole be-
tween the heterospin and the attached proton. The ef-
fect of other protons in the vicinity of the investigated
pair of nuclei has a small but perhaps not negligible
contribution to carbon longitudinal relaxation. In or-
der to evaluate this possible effect we assume that the
spectral densities at the Larmor frequency of the car-
bon for the vectors between the carbon and the protons
in the vicinity are identical to the spectral density for
the vector between the carbon and the attached proton.
Further we calculate k= (

∑
i r
−6
CHi )/r

−6
CH , where i

runs over all protons except the one attached to the car-
bon. From the motilin solution structure (Edmondson
et al., 1991) the effect of other protons was calculated
to be about 2.5% of the effect of the attached proton,
which is more than the experimental error. Since the
same effect adds to the autorelaxation of the two-spin
order it is straightforward to replace Equation 2 with
an equation where the effect of other protons in the
vicinity is taken into account. A general way of taking
the effect of other protons into account in the frame of
the spectral density mapping is given in the appendix.

We obtain:

J (ωC) = (1− k)ρC+ (1+ k)(ρCH− ρH)

2

(
1
31σ2

effB
2
0γ

2
C+ 3

(
µ0
4π

)2 h̄2γ2
Hγ2

C

4r6
CH

(1+ k)

)
(13)

Equation 3 is replaced by:

B0
(1− k)ρC+ (1+ k)(ρCH− ρH)

δC

= slope· B2
0 + intercept (14)

and the effective magnitude, corrected for the effect of
other protons in the vicinity, becomes:

|1σ| =
√

slope(1+ k)

intercept
· 3h̄γHµ0

8πr3
CH

(15)

and the orientation factor:

|forient| = |P2(cos(β))| =
√

(1+ k)

slope· intercept

(16)

With k = 0.025 this means that protons other than
the attached one are 2.5% as effective in causing
carbon relaxation as the attached proton, the esti-
mated value for the effective CSA magnitude increases
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to 156±5 ppm and the orientation factor becomes
−0.77±0.02 (Table 2). Those values are slightly
higher but within error limits of the values obtained
without any attempt to take this effect into account.

Conclusions

The magnitude of the chemical shift anisotropy as well
as precise information concerning the orientation of
the CSA tensor for a pair of spin1/2 nuclei can be es-
timated from only longitudinal relaxation rates at two
or more fields, without having to assume any motional
model.
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Appendix

In this appendix we describe how the small contribu-
tion to carbon relaxation from other protons can be
taken into account when doing spectral density map-
ping. It is assumed that the spectral density functions
are the same for all vectors between any proton and
the carbon under study.

The six relaxation rates used in the spectral density
mapping procedure can be expressed as a linear com-
bination of the spectral densities at five frequencies
and a constant describing the contribution to lon-
gitudinal proton relaxation from other protons. The
coefficients are the sum of the coefficients for the re-
laxation mechanisms, DD, CSA and the contribution
from other protons, for each relaxation rate.

−→
R =

(
MDD +MCSA+M

other
protons

)
· −→J (A1)

The spectral densities can be obtained as:

−→
J =

(
MDD +MCSA+M

other
protons

)−1 · −→R experimental(A2)

where

−→
J ≡


J (0)
J (ωC)

J (ωH − ωC)

J (ωH)

J (ωH + ωC)

ρH3,5Hi

 and
−→
R ≡


ρC
λC
λaC
ρCH
ρH
σCH

 (A3)

ρC is the autorelaxation rate of longitudinal carbon
magnetization,λC is the autorelaxation rate of trans-
verse carbon magnetization,λaC is the autorelaxation
rate of transverse antiphase coherence with carbon as
the active spin,ρCH is the autorelaxation rate of lon-
gitudinal two-spin order,ρH is the autorelaxation rate
of longitudinal proton magnetization andσCH is the
sum of the carbon proton cross-relaxation rates (dom-
inated by the attached proton) (Allard et al., 1997).
The symbolρH3,5Hi is the contribution to longitudinal
autorelaxation of the proton from other protons in the
vicinity.

MDD = d



0 3 1 0 6 0

2 3
2

1
2 3 3 0

2 3
2

1
2 0 3 0

0 3 0 3 0 0

0 0 1 3 6 0

0 0 -1 0 6 0


(A4)

where

d =
(µ0

4π

)2 h̄2γ2
Hγ2

C

4r6
CH

(A5)

and

MCSA = c



0 3 0 0 0 0
2
3

1
2 0 0 0 0

2
3

1
2 0 0 0 0

0 3 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(A6)

c = 1

3
1σ2B2

0γ2
C (A7)

and, in analogy with the treatment of the effect of
vicinal protons upon proton relaxation by Peng and
Wagner (1992):

M
other
protons = kd



0 3 1 0 6 0

2 3
2

1
2 3 3 0

2 3
2

1
2 3 3 1

kd

0 3 1 0 6 1
kd

0 0 0 0 0 1
kd

0 0 -1 0 6 0


(A8)

where

k =
(∑

i

r−6
CHi

)
/r−6
CH (A9)

and i runs over all protons except the one attached to
the carbon. The matrix formulation of Equation A2
would then become:
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

J (0)

J (ωC)

J (ωC − ωH)

J (ωH)

J (ωC + ωH)

ρH3,5Hi


=



− 3(1−k)
8(c+3d(1+k))

3(1−k)
4(c+3d(1+k))

3(1+k)
4(c+3d(1+k))− 3(1+k)

4(c+3d(1+k))
3(1+k)

8(c+3d(1+k)) 0
1−k

2(c+3d(1+k)) 0 0 1+k
2(c+3d(1+k)) − 1+k

2(c+3d(1+k)) 0
1

4d 0 0 − 1
4d

1
4d − 1

2d(1+k)
− 1

12d
1

6d − 1
6d

1
12d

1
12d 0

1
24d 0 0 − 1

24d
1

24d
1

12d(1+k)
−1

4 −1
2

1
2

1
4

1
4 0


·



ρC

λC

λaC
ρCH

ρH

σCH


where the second row corresponds to Equation 13.


